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Mean Cosine Multiple Scattering Function

1. Radiative transfer theory makes extensive use of the mean cosine 
of the phase function to compute the evolution of the light field 
under scattering. 

2. A simple analytic expression for the mean-cosine of the Fournier-
Forand phase function is derived. 

3. This expression and the power law- index of refraction 
relationship of Mobley3 are used to explicitly parameterize the 
Fournier-Forand phase function by its mean cosine in a similar 
manner to the Henyey-Greenstein4 function.

4. This function is then used to approximate the multiple scattering 
distribution and the results compared to the direct computation 
of this distribution both in the case no absorption and in the case 
of finite absorption. 



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Note: graph from J. Piskozub and D. McKee, “Effective scattering phase functions for the multiple scattering regime”, Opt. Express 19(5), 4786-4794 (2011)
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Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Any scattering phase function can be expanded in a Legendre 
polynomial series as follows:

� � � ��
�	

�


�
�


�
� ��

n

n
nnPfnp

0
cos

2
1 ��

� � � � � ���� coscos
1

1

dPpf nn �
�

�

When there is no absorption, it has been shown that the resulting 
scattering phase function after m collisions becomes simply:
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Which is also a Legendre series where all the single scattering 
coefficients are simply taken to the power of the number of 
collisions!



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Since by definition we have the following for the first and second 
Legendre polynomials:
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We obtain the following results for the corresponding coefficients 
of the Legendre expansion of any phase function:
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The first coefficient is merely the normalization factor of the 
phase function and the second coefficient is the mean cosine.



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Since, with no absorption, the resulting scattering phase function 
after m collisions is:
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The mean cosine after m collisions is therefore given by the single 
scattering mean cosine to the power m:

m
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This result has been verified numerically for the Fournier-Forand 
and Henye-Greenstein functions by Piskozub and McKee



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Note: graph from J. Piskozub and D. McKee, “Effective scattering phase functions for the multiple scattering regime”, Opt. Express 19(5), 4786-4794 (2011)



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

In the presence of absorption, it is possible to obtain an analogous 
result as follows.  We will use the albedo (the ratio of scattering to 
scattering + absorption) as the controlling parameter.
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If we assume that absorption is independent of scattering angle 
even after multiple collisions, the asymptotic value of the mean
cosine is given by:
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This result has also been verified numerically for the Fournier-
Forand and Henye-Greenstein functions by Piskozub and McKee



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Note: graph from J. Piskozub and D. McKee, “Effective scattering phase functions for the multiple scattering regime”, Opt. Express 19(5), 4786-4794 (2011)



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

Note: graph from J. Piskozub and D. McKee, “Effective scattering phase functions for the multiple scattering regime”, Opt. Express 19(5), 4786-4794 (2011)

These are some of the corresponding Fournier-Forand multiple 
scattering phase functions as computed by Piskozub and McKee



Mean Cosine Multiple Scattering Function
Why is the mean cosine important in radiative transfer theory?

We now note a truly remarkable property of the HG phase 
function. It is self similar under multiple scattering!
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This self-similarity may mean that the HG phase function may be  
the asymptotic multiple scattering state of other phase functions!

There is at this time no equivalent result for the FF function. 
However, if we wish to begin to investigate the transition from single 
to multiple scattering of the FF function it would be very helpful to 
first parameterize it in terms of its mean cosine. 



Mean Cosine Multiple Scattering Function
In order to obtain an expression for the mean cosine of the FF 
function we need to evaluate the following two integrals in sequence:
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Mean Cosine Multiple Scattering Function
We therefore need to first derive the scattering phase function from 
first principles. We start with the single particle phase function 
approximation. We want this function to be normalized to unity.
Note that:
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Mean Cosine Multiple Scattering Function

Normalizing to unity implies that:
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The single particle normalized phase function is therefore:
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First represent the single particle Airy function angular diffraction 
pattern by the following approximation: 
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Mean Cosine Multiple Scattering Function

If we assume an inverse power (Junge) particle size distribution we obtain 
the following equation:

To normalization we need to perform the following operations:
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To get the full phase function we then need to integrate over all x 
accounting for the scattering efficiency Q 
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Mean Cosine Multiple Scattering Function
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The normalization factor becomes:

The normalized phase function before integration then becomes:
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The above expression is the one we need to use to evaluate related 
parameters such as the mean cosine (asymmetry) factor



Mean Cosine Multiple Scattering Function
Expressing the cosine in terms of our variables we obtain:

Because of our normalization the unity factor above simply 
integrates to one and we only need to evaluate the second term. 
Performing the angular integral we obtain:
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Integrating this over x is analytic but leads to a complex result 
involving 2F1 functions. We can somewhat simplify the expressions 
by first using the following variable replacement.
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Mean Cosine Multiple Scattering Function
The mean cosine for a Fournier-Forand function is then given by:

This formula can be simplified by expanding the 2F1 functions in a 
highly convergent series for small values of z.
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Mean Cosine Multiple Scattering Function
After performing the expansion we obtain the following expression 
for the mean cosine:

� � � � � � � � � � � � � � � � � �

� � � �



�

�

�

�



�

�

�

�
��
�

��
����

�
��
� �

���

�


�

�

�

�
�

��
�

��
�

��
�

��
��

�

2
tan1ln112

...
79573513

181,
32

2
5

���

��������
�

�

z
zzz

zzzzng

This expression is actually valid for the complete Fournier-Forand 
function since the contribution to the mean cosine of the second
additive term of the function is identically zero because it is 
symmetrical about 90 degrees.
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Mean Cosine Multiple Scattering Function
In order to parameterize the Fournier-Forand function in terms of 
the mean cosine, we need to reduce the expression above to a single 
parameter. To do this we can use the relationship found by Mobley 
et al between index and Junge power law. This relationship can be 
approximated as:

Note that the Fournier-Forand formula is only strictly valid between 
the limits  , which imply an absolute limit in index of:
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However one should be somewhat conservative and restrict the 
range so as to not approach the limits of validity too closely. This 
issue should be looked at in more detail but a suitable choice for the 
limits for now would be:
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Mean Cosine Multiple Scattering Function
With the above constraints the formula for the mean cosine can now 
be approximated as:

We can easily obtain a simple approximate expression for (1-g) in 
terms of (n-1) by performing a modified variable power Pade first 
order approximation and inverting the resulting function. 
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Mean Cosine Multiple Scattering Function
Inverting the previous formula we obtain:
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The formula is valid from an index of 1.01 to 1.25 which 
corresponds to a range for g of :
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Mean Cosine Multiple Scattering Function
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Plot of (n-1) in terms of (1-g). The dots are the exact solution using 
the full expression with the Mobley substitution and the curve is 
given by the inversion of the Pade approximation. 



Mean Cosine Multiple Scattering Function

We can now use Mobley’s relation along with this inverse Pade
formula to rewrite the Fournier-Forand function in terms of the 
mean cosine. We simply need to perform the following replacements 
in the variables of the FF function.

� �
� �

� � � �
� �

5
425

2

15.723
1

3
4and

15.723
13

�




�

�

�

�
��

�
�



�

�

�

�
��

�
��

g
gu

g
g �&'

After the above replacement, the FF function for multiple scattering 
can be approximated by simply inputting into the formula the 
appropriate value of g . This is a valid approach for a low number of 
collision. However, as mentioned previously we have no guarantee
that the resulting function will model accurately the multiple 
scattering function as in the case of the HG function.



Mean Cosine Multiple Scattering Function

Graph of the FF multiple scattering limit for finite albedo. The cases are the same as those 
investigated by J. Piskozub and D. McKee. g=0.9304 which corresponds to bb/b=0.018 for all cases. 
From top to bottom the albedo values vary from 0.95 to 0.7 to 0.3. The bottom curve is the single 
scattering phase function itself with g=0.9304. There is a good fit to the exact results of Piskozub and 
McKee.



Mean Cosine Multiple Scattering Function
It should be noted that we can obtain an exact expression for the Legendre
expansion of the additive term of the FF function. The zero order term is 
zero since the term was specifically designed not to modify the overall 
normalization of the FF function. As noted previously the first order term is 
also zero by symmetry. The only non-zero term is the second order term.  
The final result is given below.
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For the case of m order scattering with no absorption we have:

For the asymptotic case with finite absorption we have:



Mean Cosine Multiple Scattering Function

Graph of the FF multiple scattering limit for finite albedo for the exact additive term . The cases are the same 
as those investigated by J. Piskozub and D. McKee. g=0.9304 which corresponds to bb/b=0.018 for all cases. 
From top to bottom the albedo values vary from 0.95 to 0.7 to 0.3. The bottom curve is the single scattering 
phase function itself with g=0.9304. The fit to the exact results of Piskozub and McKee is significantly 
improved when compared to the approximate additive term expression .



Mean Cosine Multiple Scattering Function

PLANNED FUTURE WORK

Investigate the behavior of the higher order terms of the Legendre 
expansion of the FF function.

Verify if the coefficients of the expansion coefficients of the FF 
function for multiple scattering tend to a limit and if in this limit 
they become identical to the coefficients of the HG function.

Check if the approach to this asymptotic case can be approximated 
analytically.


